How to Handle Imbalanced Datasets in Python

How to Handle Imbalanced Datasets in Python
In this video, you will be learning about how you can handle imbalanced datasets. Particularly, your class labels for your classification model is imbalanced (one class is significantly larger than the other which essentially gives rise to a majority class and minority class)

In this video, you will be learning about how you can handle imbalanced datasets. Particularly, your class labels for your classification model is imbalanced (one class is significantly larger than the other which essentially gives rise to a majority class and minority class). Here, we will use the imbalanced-learn Python library to perform random undersampling and random oversampling so that you can address this issue of imbalanced datasets.

#python #data #datascience #dataprofessor

Suggest:

Python Tutorials for Beginners - Learn Python Online

Learn Python in 12 Hours | Python Tutorial For Beginners

Complete Python Tutorial for Beginners (2019)

Python Programming Tutorial | Full Python Course for Beginners 2019

Python Tutorial for Beginners [Full Course] 2019

Introduction to Functional Programming in Python